


1 Introduction
A great deal of research has focused on two key consumer decisions: (1) the shopping,

or purchase, decision which is usually made in store; (2) the consumption decision which is

made later at the time of consumption. For consumer packaged goods, the two decisions are

inextricably linked even though they occur at di�erent times and in di�erent places.

Shopping decisions are made for future consumption, which generally occurs over multi-

ple consumption occasions. On each such occasion, only products selected previously while

shopping are available to be consumed. The shopping decision therefore creates a set of

products for future consumption and so is inherently forward-looking. At the same time, the

shopping decision constrains the product alternatives that are available for future consump-

tion compared to the full assortment in store. Each successive consumption decision may

further constrain the product alternatives available, depending upon how many units of each

product alternative were selected when shopping. If the consumer has only a single unit of

a particular product alternative remaining, then consuming it would preclude choosing that

alternative on all succeeding consumption occasions. Because consumption decisions, like







people prefer to preserve options for the future, even when doing so leads to less desirable

outcomes. Our canonical model strongly supports this �nding. The experiments reported in

their study involve two-stage choices, where only a single item is chosen in the second stage.

Similar two-stage choice models have been applied to consideration set formation (Hauser

and Wernerfelt 1990, Roberts and Lattin 1991) and to choice among retail assortments

(Kahn and Lehmann 1991). Like the models we propose herein, these two-stage models

specify Gumbel-distributed errors to represent preference uncertainty.

Guo (2010) developed a structural econometric model for consumers' choice of assort-

ments (n-packs). His model allows for consumption �exibility, due to future preference

uncertainty as well as state dependence; our model addresses only the former. Guo esti-

mated his model on scanner panel data for yogurt purchases. Because consumption data

was not available, Guo estimated the consumer's valuation of each assortment (what we

call n-packs) using simulation. This involved simulating error streams for each alternative

over the consumption horizon and assuming the consumer selects the alternative o�ering the

highest utility on each consumption occasion. We note that such a consumption policy is

plausible but not optimal. Guo found that allowing for both future preference uncertainty

and state dependence o�ers better in- and out-of-sample �ts for the scanner panel data than

more restricted nested models. However, his parameter estimates indicate positive state

dependence�this is the opposite of variety-seeking, which is received wisdom in consumer

psychology (Simonson 1990, Read and Loewenstein 1995). Guo also found that consumers

make consistent multi-product purchases; that is, they purchase horizontally-varied sets of

products but purchase similar sets of products over time. In an earlier study, Guo (2006)

determined that consumption �exibility, due to preference uncertainty, also a�ects �rm de-

cisions about product variety and pricing. Using a duopoly model, Guo identi�ed the con-

ditions under which consumers purchase multiple competing products. He found that, if

consumers have relatively homogeneous preferences, �rms can actually make lower pro�ts

by falling into a ��exibility trap� by pricing to attract primary demand.

The work that is closest to ours is due to Walsh (1995). In this paper, the author modeled

consumption decisions for assortments with two product alternatives. Both alternatives'

future utilities are random, and the problem reduces to an equivalent one in which one

alternative has random utility and the other has constant utility (a reduction that only works

for assortments with precisely two alternatives). Assuming that consumers are forward-

looking, Walsh developed dynamic equations that describe optimal consumption behavior

and the associated value function. Although the form of the policy and the value function are

not available in closed-form, Walsh's analysis yielded three interesting �ndings: (i) consumers

may not choose the alternative o�ering the greatest utility on a particular consumption
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occasion; (ii) more inventory of an alternative makes it more likely to be selected; (iii) adding

an additional unit to the assortment causes the utility of that assortment to increase by more

than the expected utility of the item added. Our canonical model generalizes Walsh's �ndings

(and adds some re�nements) while enabling normative predictions for shopping decisions.

Further, our generalized model (including an outside option for consumption) demonstrates

that the canonical model represent a boundary solution. Compared to Walsh's model, ours

(i) apply to n-packs of any size and with any number of product alternatives; (ii) result in a

closed-form value function that can be maximized to determine each consumer's optimal n-

pack; (iii) are based on marginal choice probabilities and so can be customized to individual

consumers and used for decision support. The tradeo� we make is in using the multinomial

logit framework (deterministic utility plus Gumbel-distributed errors) to describe future

utilities; Walsh used a general error distribution. Given the ubiquity of the multinomial

logit in discrete choice and assortment planning models, we feel that this tradeo� is justi�ed.

Another related vein of research involves assortment optimization in the revenue manage-

ment literature. The multinomial logit (MNL) plays a prominent role in this research. One

of the earliest papers in this vein is due to van Ryzin and Mahajan (1999), who used MNL

embedded in the demand model of a newsvendor problem and derived optimal pro�t func-

tions under several reasonable assumptions. The authors showed that the pro�t-maximizing

assortment is some subset of the most popular products (the most popular products have the

highest probability of being selected). The authors used the concept of majorization to derive

su�cient conditions that ensure the pro�ts of one category dominate those of another. In a

subsequent paper, Talluri and van Ryzin (2004) introduced a dynamic model and developed

conditions on the choice probabilities that ensure the optimal assortment is some contiguous

set of the highest fare products (the �nested by fare order� property). They developed nec-

essary and su�cient conditions that once again involve the concept of majorization, and the

MNL choice model was shown to satisfy these conditions. More recently, Rusmevichientong

and Topaloglu (2012) showed that these results remain valid for MNL in the presence of

parameter uncertainty (for the choice probabilities) and a capacity constraint.

In contrast to these papers, our model addresses assortment optimization at the consumer

level and not the retailer level. Moreover, our model does not use MNL choice probabilities

to capture consumer demand, but instead uses the random utility framework of MNL to

capture preference (utility) �uctuations for a given consumer over time. Our model also fo-

cuses on the combination of alternatives and quantities that comprise a consumer's optimal

n-pack. Majorization plays an important role in our work as well, but we do not use it as an

assumption to prove a theoretical result. Rather, we �nd that a stronger form of majoriza-

tion, what we have called �strong majorization,� characterizes the relationship between the
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optimal solutions of our two main models.

3 Expected Utility of an n -Pack: The Canonical Model

3.1 Assumptions
Consistent with the extant literature, we begin by assuming (in this section) that the

consumer selects an alternative from a preselected n-pack on each consumption occasion.

There are M distinct product alternatives available in the product category (the full assort-

ment available in store) although only m alternatives are represented in the n-pack (m � n;

m � M ). The utility parameters for each alternative are Ui (i = 1; 2; :::; M ). These pa-

rameters could be a function of many things; however, we take them to be �xed for ease of

exposition. On any particular consumption occasion t, the utility that consumer j receives

from a particular alternative i is Uji + � jit where the random errors � jit are assumed to be

independent Gumbel distributed with CDF F (z) = exp(� e� (z� � )=� ). The errors account

for a variety of unmodeled factors that a�ect consumption decisions, and each consumption

occasion t represents a fresh draw for these errors. For example, a consumer might prefer

vegetable soup on most consumption occasions but prefer chicken soup when they are feeling

ill�this would be captured in the error term. Like Walsh (1995) and Guo (2010), we assume

these errors become known to the consumer at the time of consumption but not before.

Given the canonical model's assumption that one unit is consumed per period, we must have

t = 1; 2; : : : ; n periods in the consumption horizon.

Without loss of generality, we may assume that the problem has been normalized so that

the errors are standard Gumbel with � = 0 and � = 1 (observe that Uji + � jit � Ujl + � jlt if

and only if 1
� Uji + 1

� (� jit � � ) � 1
� Ujl + 1

� (� jlt � � ), but 1
� (� jit � � ) is standard Gumbel for all

(j; i; t )). The expectation of a standard Gumbel is E(� jit ) =
� 1

0 ln(z)e� zdz; this is Euler's

constant and denoted by  . The expected utility of each product is therefore E(Uji + � jit ) =

Uji + :







Moreover, by the de�nition of a(k1; k2) (see (1))

a(k1; k2) = U1 � U2 + V(



future preference uncertainty.2 The term ln (n!) captures the e�ect of an n-pack's size while

the term � ln ((k1)!(k2)! � � � (kM )!) captures the e�ects of both variety and inventory. For an

n-pack with a �xed number of units n, the choice premium is increased by including more

alternatives and/or ��attening� the distribution of alternatives (ki ). The maximum choice

premium is ln (n!), which is realized when there is exactly one unit of n distinct alternatives;

the minimum choice premium is 0, which is realized when ki = n for some alternative i.

For any n-pack then, the ratio of the choice premium to ln (n!) can be interpreted as the

proportion of the available choice premium captured by that n-pack.

The intuition behind this optimal policy can be made clear by considering a simpli�ed

case. Let us suppose a given consumer has a 2-pack consisting of one unit of alternative 1

(their favorite), and one unit of alternative 2 (their second favorite), with U1 > U 2. On the

�rst consumption occasion, suppose the observed error terms are e1 and e2 with e2 > e1.

Even if U2 + e2 < U 1 + e1, alternative 2 represents the better consumption choice. This

is because U1 and U2 are �xed, and so the sum of the realized errors (one now, one later)



Prob(i ) = P robf Ui + V(k1; � � � ; ki � 1; ki � 1; ki +1 ; � � � ; kM ) + � i

� Uj + V(k1; � � � ; kj � 1; kj � 1; kj +1 ; � � � ; kM ) + � j 8j 6= ig

= Prob(V(k1; � � � ; kM ) + ln(ki ) + � i � V (k1; � � � ; kM ) + ln(kj ) + � j 8j 6= i )

= P rob(ln(ki ) + � i � ln(kj ) + � j 8j 6= i )

=
ki

P M
l=1 kl

The last equality follows from the standard logit probability formula with the customary

utility parameter �Ui � replaced by ln (ki ).

3.3 Identifying a Consumer's Optimal n -Pack
Given a consumer's Ui (as can be estimated from purchase histories or using preference

elicitation methods), the value function in (4) can then be optimized over all possible in-

teger quantities (k1; k2; : : : ; kM ) (ki � 0;
P M

i =1 ki = n) to obtain the consumer's optimal

n-pack, (k�
1; k�

2; : : : ; k�
M ). The optimal pack represents the solution to the �rst stage (the se-

lection/shopping stage) of our two-stage problem (selection and then consumption). Figures

2a and 2b show the optimal n-packs of sizes n = 2 and n = 3 . The optimal n-packs vary

by region, depending on di�erences in their ranked utilities; this is because translating all

utilities by a constant translates all n-pack values by a constant as well. We assume that

the utilities are ordered so that U1 � U2 � U3, �xing U1 = 0 for identi�cation purposes.

For n = 2 , the distribution of product utilities is captured in the di�erence U= 2=1= 2



Figure 2a. Optimal n-pack by Region for n = 2 .

Figure 2b. Optimal n-pack by Region for n = 3 .
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many solvers, and we experienced signi�cant di�culties trying to solve this using o�-the-shelf

software (in large part because many of the k�
i are precisely zero and the optimizer would

terminate if these slipped into negative territory). Fortunately, it is quite easy to solve this

problem using a simple optimization algorithm based on swaps that is guaranteed to produce

a global optimal solution in at most n swaps. This algorithm is described next.

Suppose we have an incumbent feasible solution k1; k2; : : : ; kM (
P M

i =1 ki = n, ki 2 N0)

and we want to improve it. One way is to increase a non-negative ki by one unit and decrease

a currently positive kj by one unit. The net change in the objective function caused by this

one unit swap is

Ui � ln (ki + 1) � Uj + ln(kj ); (5)

and this suggests the following greedy technique. Interpreting ln(0) = lim
a! 0+

(a) = �1 ,

calculate the optimal indices

i � = argmax
i

(Ui � ln (ki + 1) ; i = 1; :::; M ) (6)

j � = argmin
j

(Uj � ln (kj ) ; j = 1; :::; M ) : (7)

Ties in the maximum can be broken by selecting the alternative with the smallest index;

ties in the minimum can be broken by selecting the alternative with the largest index. Then

de�ne the di�erence

� � Ui � � ln (ki � + 1) � Uj � + ln (kj � ) : (8)

If � > 0 then increase ki � by one unit and decrease kj � by one unit; if no such combination

exists, then stop. Observe that if � > 0, the objective function increases by a strictly

positive amount � after each swap. Otherwise, � � 0 and we must have achieved the

stopping condition

Max
i

(Ui � ln (ki + 1) ; i = 1; :::; M ) � Min
j

(Uj � ln (kj ) ; j = 1; :::; M ) : (9)

Theorem 2. (Optimality of the Swapping Algorithm) Given any starting solution

(k1; k2; : : : ; kM ) with
P M

i =1 ki = n, ki 2 N0



optimal, and they can be exploited in several ways. One of these is the connection between

the optimal (n)-pack and the optimal (n + 1) -pack, which is described next.

Theorem 3. Let (k�
1; k�

2; : : : ; k�
M ) represent the consumer's optimaln-pack. Then the con-

sumer's optimal (n + 1) -pack is obtained by identifying the alternativei that maximizes

Ui � ln(k�
i + 1) and increasing that alternative by one unit.

The latter theorem not only means we can build larger optimal packs from smaller optimal

packs, but it also identi�es the marginal unit that should be added to any optimal n-pack.

For a retailer looking to encourage a consumer to buy an additional unit, this information

would be extremely useful.



simply �sequential choice�) as a benchmark for measuring variety. Sequential choice implies

the consumer is allowed to choose any alternative from the full assortment (i.e., every alter-

native in a category that could be selected from a store) on each consumption occasion. This

wait-and-see approach means the consumer can observe the random component of utility (� i )

for every alternative in the full assortment immediately before making a consumption deci-

sion. The consumer thus maximizes their utility on every consumption occasion and cannot

obtain any greater utility than this when consuming n items on n consecutive occasions. We

show next that the optimal n-pack selected a priori





3-pack with exactly one alternative; 80 students had an optimal 3-pack with exactly two

alternatives; and 62 students had an optimal 3-pack with exactly three alternatives. Using

the same self-reported choice frequencies, we found that in 102 of the 168 cases (60.7%),

the probability of a student consuming less variety than their optimal 3-pack in a sequential

choice experiment would be greater than their probability of consuming more. Additionally,

the average probability of a student consuming less variety than their optimal 3-pack over

all 168 cases was computed to be .383, whereas the average probability of consuming more

variety was computed to be .151. This o�ers additional support for the conjecture that

consuming less variety in sequential choice experiments may be a consequence, in part, of

probabilistic principles stemming from rational decision-making. Additional work is under

way to rigorously test this and other conjectures regarding variety.

3.5 Robustness of the Model: Assessing the Impact of the Gumbel

Assumption
To assess the robustness of our results to other error distributions, we conducted several

numerical experiments to ensure that our results were not overly dependent on the assump-

tion of a Gumbel distribution. We provide a summary of the results here; the reader is

referred to Appendix B for the details.

Two additional error distributions were selected, the uniform and the normal. In the �rst

numerical experiment, we analyzed 3-packs based on utilities calculated from actual choice

data. In the second experiment, we analyzed 6-packs based on utilities calculated from

simulated choice probabilities. In total, 106 test problems were analyzed, six involving 3-

packs and 100 involving 6-packs. In general, there were virtually no meanimgful discrepancies

in valuations of n-packs that consumers would actually choose. Consequently, the error

distribution appears to have little if any impact on a consumer's valuation of their most

preferred n-packs (say the ratings for their top 10-20 n-packs). There were some discrepancies

in valuations for problems that included alternatives the consumer would rarely (if ever)

select, i.e., test problems that included one or more �unpopular alternatives� with choice

probabilities approaching 0. In such cases, the corresponding utility in the normal and

Gumbel models becomes unbounded from below, whereas the utility in the uniform model

is always bounded. For this reason, the values for the Gumbel and normal distributions

tended to track each other closely for all n-packs, whereas the values for the uniform tended

to diverge for those n-packs that included unpopular alternatives, which are inherently �low-

value� n-packs. Because our analysis is based on determining a consumer's optimal n-pack,

di�erences in low-value n-packs have no impact on our results.
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4 Expected Utility of an n -Pack: The Generalized Model

4.1 The Optimal Value Function
In this section we assume the consumer may select the outside option on any consumption

occasion and thus reject all items remaining in their pack. The introduction of an outside

option e�ectively allows for di�erent consumption rates. It does, however, add complexity

compared to the canonical case.

We will again use n to denote the number of total units in the n-pack, and M to denote

the total number of distinct alternatives available. Let ki 2 N0 = f 0; 1; 2; 3; : : :g represent

the number of units of alternative i in the n-pack. The utility parameter for each alternative

is denoted by Uj for j = 0; 1; : : : ; M , (note that we include U0, the utility of the outside

option). The number of consumption occasions is denoted by t, which is also the number

of time periods in our dynamic analysis, and the value function with t periods to go is

denoted by Vt (k1; k2; : : : ; kM ), which means consumption periods in the generalized model

are numbered backwards(as is frequently done in dynamic programming models). The value

function in the terminal (salvage) period (period 0) is V0(k1; k2; : : : ; kM ) = 0 . One can think

of this as an n-pack becoming worthless if its expiration date is reached without having been

consumed.

The �no consumption� option is represented by the subscript 0, and we can represent

the set that is ultimately consumed (or �realized�) after t consumption occasions by an

M + 1 dimensional consumption vector(



lead to

(four periods) I 4(4; 2; 1) = f (4; 0; 0); (3; 1; 0); (3; 0; 1); (2; 1; 1); (2; 2; 0); (1; 2; 1)g

(three periods) I 3(3; 2; 1) = f (3; 0; 0); (2; 1; 0); (2; 0; 1); (1; 1; 1); (1; 2; 0); (0; 2; 1)g

(two periods) I 2(2; 2; 1) = f (2; 0; 0); (1; 1; 0); (1; 0; 1); (0; 1; 1); (0; 2; 0)g

(one period) I 1(1; 2; 1) = f (1; 0; 0); (0; 1; 0); (0; 0; 1)g

Observe that in each of these three sets, the �rst input (y0) is taken to equal the number

of consumption occasions. This is appropriate since y0 is the upper bound on the number

of times the �no consumption� option could be invoked, which is equal to the number of

consumption periods, t. While the number of terms can be quite large, it is bounded inde-

pendently of the number of consumption occasions t. Indeed, there are at most
Q M

i =1 (ki + 1)

elements in I t (t; k1; k2; : : : ; kM ), which corresponds to the number of distinct subsets of

(k1; k2; : : : ; kM ) padded by the appropriate number of �outside option� selections to bring

the total number of selections to t. This upper bound is obtained for all t � n.

Theorem 5. (Optimal Value of an n-Pack, Generalized Model) At each consumption

occasion, assume the consumer can choose a product from the n-packor select an outside op-

tion. The optimal expected value function overt consumption periods (assuming an optimal

policy is followed each period) is

Vt (k1; k2; : : : ; kM ) = ln

2

4
X

(x0 ;x1 ;:::;x M )2 I t (t;k 1 ;k2 ;:::;k M )

t!
x0!x1! � � � xM !

e
P M

j =0 x j Uj

3

5 + t (13)

The optimal policy at each consumption occasion t is to select, among the available

alternatives, the one that maximizes current utility plus expected utility-to-go, i.e,. the one

that maximizes U0+ � 0+ Vt � 1(k1; k2; : : : ; kM ); Uj + � j + Vt � 1(k1; k2; kj � 1; : : : ; kM ) for kj > 0.

Unlike the canonical version, there is no additional simpli�cation in the optimal policy.

While the value function is somewhat complicated, it can be simpli�ed under the as-

sumption t � n, which we would expect to hold in practice. As noted earlier, there are a

constant
Q M

i =1 (ki + 1) terms in the summation of (13). Additionally, de�ning the shifted

parameters U0
i = Ui � U0 (so that the outside option has utility parameter U0

0 = 0), the value
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function (13) can be expressed as

Vt (k1; k2; : : : ; kM ) = ln

"
X

x i � k i ; i � 1

t!

(t �
P M

i =1 x i )!
�

e
P M

j =1 x j U0
j

x1! � � � xM !

#

+ t( + U0): (14)

This simpli�ed form is easier to manipulate and is used extensively in Theorem 7.

The terms in the value function (13) generalize the probability interpretation established

for the canonical model in section 3.4. There, we established that the value function for the

n-pack (k1; k2; : : : ; kM ) in the canonical model could be equated to the log-probability of

consuming the same set of products in a sequential choice experiment; i.e., an experiment in

which the consumer can select the product from the full assortment that is most preferred on



4.2 Variety, Consumption Horizons, and the Outside Option
Imagine two consumers, A and B, both of whom like exactly three types of wine: Chardon-

nay, Merlot, and Cabernet. Both consumers prefer Chardonnay 70% of the time, Merlot 15%

of the time, and Cabernet 15% of the time. However, Consumer A enjoys a bottle every

evening whereas Consumer B enjoys a bottle about once a week. If we assume the opportu-

nity to consume wine presents itself every evening, then Consumer A has a very small value

for U0 and thus a high usage rate for wine whereas Consumer B has a much higher value for

U0 and thus a low usage rate for wine. Given this information, which 3-pack of wine should

each consumer buy? (We ignore, of course, the fact Consumer A would probably tend to

buy a larger pack size.)

The fact that consumer A always chooses wine is evidence of an intrinsically low value

for U0, one that is exceeded by U1, U2, and U3



Table 2. Optimal 3-pack for the Wine Example.

captures what is typically known in dynamic programming as the �end of horizon e�ect.�

Over slightly longer horizons, carrying greater variety than (k�
1; k�

2; : : : ; k�
M ) would still be

optimal to address these end of horizon e�ects. Nevertheless, end of horizon e�ects typically

dissipate over su�ciently long horizons, and this dynamic model is no di�erent. As the

horizon lengthens, there are su�cient opportunities to match the right item with the right

consumption occasion, and the optimal n-pack converges to that of the canonical model.

The relationship between the optimal n-pack in the generalized model and the optimal n-

pack in the canonical model can be characterized more precisely. The precise result is stated

in the following theorem (where alternatives are again labelled so that U1 � U2 � � � � � UM ).

The condition t � n is included to simplify the proof; otherwise, the number of terms in the

value function would also depend on t.

Theorem 6. For any horizon t � n, denote the optimal n-pack of the canonical model by

(k�
1; k�

2; : : : ; k�
M ) and that of the generalized model by(q�

1; q�
2; : : : ; q�

M ). Then it cannot happen

that q�
j > k �

j and q�
i < k �

i for j < i .

The theorem requires that the components of the optimal vectors k� = ( k�
1; k�

2; : : : ; k�
M )

and q� = ( q�
1; q�

2; : : : ; q�
M ) follow a strict pattern. Assuming the vectors are not identical,

then there is an index, say c



is weaker than the condition posed in Theorem 6. Consider our previous example involving

k� = (5 ; 2; 2; 0; 0) and q� = (3 ; 3; 1; 1; 1); it is clear that k� � q� even though this pair does

not satisfy the relationship described by the theorem. The contrast between the two con-

cepts can be sharpened by looking at the di�erence in partial sums; whereas majorization

requires that
P l

i =1 x(i ) �
P l

i =1 y(i ) � 0 for l = 1; 2; : : : ; M , the condition k�
i � q�

i for i � c

and k�
i � q�

i for i > c requires that
P l

i =1 x(i ) �
P



The property of diminishing marginal value makes intuitive sense. Because the optimal

value is based on matching the product with the consumption occasion, adding additional

periods should not yield proportional gains in value. Adding additional periods means we

are searching for better opportunities in the right hand tail of the error distribution, and

better payo�s should become increasingly di�cult to obtain as time increases. Dynamic

models in revenue management often require this type of structure, and so the property is

an important one if the model is to �nd additional applications in this area.

5 Summary and Future Research
We have proposed a utility-maximizing model based on consumers' long-run consumption

preferences to estimate the value they can expect to receive from an n-pack of substitutable

products. Our canonical model predicts that (i) strategic consumers will choose di�erent

product alternatives in proportion to their available inventory and (ii) the total value con-

sumers derive from an n-pack increases in the pack's utility parameters but decreases as the

distribution of products within the n-pack becomes more concentrated. This result could

explain the seemingly excessive variety that has been observed in behavioral experiments

on n-pack selection for future consumption. Our generalized model demonstrates that the

inclusion of an outside option (e�ectively reducing the consumption rate), which to our

knowledge has never been done, would lead to even more variety in n-pack alternatives and

even greater dispersion in n-pack quantities.

Our model assumes that both the consumption utilities Ui and the distribution of stochas-

tic errors � i are stationary, but this might not always be the case. Allowing for non-

stationarity in consumption utilities (i.e., variety-seeking, state dependence) or in the stochas-

tic error distribution (i.e., learning) might lead to new results and insights. Our model also

assumes that there is no discounting of future utilities, so temporal discounting is another

possible area for future research. The direct approach, introducing a discount factor on

the expected �value-to-go� function, sacri�ces the virtue of a closed-form value function.

However, it may still be possible to analyze the value function implicitly or to introduce a

di�erent discount mechanism that preserves the closed-form solution. Our model also does

not currently allow for any replenishment of inventory by the consumer. Could replenish-



erations. Perhaps the most obvious extension is to assume that the consumption utility

parameters Ui are functions of product attributes, such as price. Still another useful exten-

sion would be to investigate how n-pack valuation a�ects consumers' willingness to pay. For

example, many retailers implicitly o�er the option to purchase an n-pack including only a

single product alternative at a low price per unit, or purchase single units of di�erent prod-

uct alternatives at a higher price per unit. For example, a 6-pack of a single brand/type

of beer might cost $8.99 (� $1.50/beer) while purchasing di�erent beers individually might

cost $1.99/beer. Depending on the di�erence between consumers' valuation of their optimal

n-pack and an n-pack with only their favorite alternative, the retailer may be able to price

a �build your own 6-pack� option to extract additional revenues while also increasing con-

sumers' utility. Pricing n-packs and designing promotions that target individual consumers

are natural applications for this type of model.



model to include a disutility term for storage and/or the price of units, and the optimization

would then determine the appropriate pack size along with the optimal pack. Given the

simple structure of the value function in the canonical model, the optimization problem thus

created might be relatively straightforward to analyze.
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Appendix A (Proofs)
THEOREM 2

Proof. Part I: Optimality of stopping condition. Consider an n-pack with quantities ki

for alternative i that satis�es the stopping rule (9). Then for any other pack with quan-

tities k0
i



j 2 I � ; mj 2 N; 1 � mj � k0
j � kj from (18). These pairings can be done in any manner.

We can thus rewrite (15) using a single summation where each (paired) term has the general

form

Ui � Uj � ln(ki � l i ) + ln(kj + mj ) (19)

i 2 I + ; l i 2 N0; l i � ki � k0
i

j 2 I � ; mj 2 N; 1 � mj � k0
j � kj

But by the stopping condition (9), with the roles of i and j interchanged, we must have

Ui � ln (ki ) � Uj + ln (kj + 1) � 0 all i; j

=) Ui � ln (ki � l i ) � Uj + ln (kj + mj ) � 0 all i; j

which implies all the terms in (19) are non-negative and thus so is the summation in (15).

Thus V (k1; k2; : : : ; kM ) � V(k0
1; k0

2; : : : ; k0
M ) � 0 as was desired.

Part II: Convergence in at most n swaps.To show the algorithm converges in at most

n swaps, we will show that an alternative that gains a unit will never lose a unit, and an

alternative that loses a unit will never gain back a unit (note this implies each unit can be

moved at most once). To do this, we �rst replace each utility Ui with the quantity Ui � i � "

where " is a non-Archimedean in�nitesimal, a positive number that is smaller than any

number in the base �eld. This creates a strict ordering in the utilities used in (6,7) so that

ties are broken by the non-Archimedean term. This is equivalent to breaking ties in (6) by

selecting the alternative with the smallest index, and breaking ties in (7) by selecting the

alternative with the largest index.

We �rst show that an alternative that gains a marginal unit can never lose that marginal

unit. Suppose g is a maximizer to (6) and therefore a �gainer� in the current swap and l is

the minimizer to (7) and therefore a �loser� in the current swap. If g = l , then it is easy

to see the optimality conditions are met and we are done. We therefore assume g 6= l . We

must have

Ug � g � " � ln (kg + 1) > U i � i � " � ln (kiln



The gain (4 ) in our objective function for the current swap is

4 = Ug � g � " � ln (kg + 1) � Ul + l � " + ln (kl ) > 0: (22)

The alternative g cannot be the minimizer for (7)�and hence the loser�in the next iteration of

the algorithm unless the optimality conditions have been achieved. For if g is the minimizer of

(7) in the next swap, then using kg + 1 units for alternative g and kl � 1 units for alternative

l , we may apply (5) to calculate the possible gains in the objective function at the next

iteration as

Ui � i � " � ln (ki + 1) � (Ug � g � " � ln (kg + 1)) i 6= l; g (23)

Ul � l � " � ln (kl ) � (Ug � g � " � ln (kg + 1)) : (24)

The potential gains in (23) are all negative by (20); the potential gain in (24) is negative by

(22). This means the optimality conditions have been met (and we are done), or else g is not

the minimizer for (7) in the next iteration of our algorithm. If it is not the minimizer, then

there are two possibilities: case (i) g, and only g, gains additional units in all future swaps;

case (ii) some other alternative, say g0 (g0 6= g), gains one or more units at some point.

For case (i), there is nothing to prove because this is consistent with our premise (g never

loses the (kg + 1) st unit). For case (ii), we know by (20) that Ug � g � " � ln (kg + 1) >

Ug0 � g0 � " � ln (kg0 + 1) , and so Ug � g � " � ln (kg + 1) > U g0 � g0 � " � ln (kg0 + m) for any

m 2 f 1; 2; : : :g. Thus g could never be a minimizer in (7) with (kg + 1) units of inventory

once it has been a maximizer in (6). Since g and kg were arbitrary, this proves that any

marginal unit gained is never lost.

We now show that an alternative that loses a marginal unit can never gain back that

marginal unit. We claim the alternative l cannot be a maximizer for (20)�and hence a

gainer�in the next iteration of the algorithm unless the optimality conditions have been

achieved. For if l is a maximizer in the next swap, then using kg + 1 units for alternative

g and kl � 1 units for alternative l , we may apply (5) to calculate the possible gains in the

objective function at the next iteration as

Ul � l l , we may apply (5) to calculate the possible gains in the

lUl � l llkg + 1))ki6 l; g (23)

Ul � l �" +



The potential gains in (25) are all negative by (21); the potential gain in (26) is negative by

(22). This means the optimality conditions have been met (and we are done), or else l is

not the maximizer for (20) in the next iteration of our algorithm. If l is not the maximizer,

there are two remaining possibilities: case (i) l , and only l , loses additional units in all future

swaps; case (ii) some other alternative, say l0 (l0 6= l), loses one or more units at some point.

For case (i), there is nothing to prove because this is consistent with our premise (l never

gains back the l th unit). For case (ii), we know by (21) that Ul � l �" � ln (kl ) < U l0� l0�" � ln (kl0)

and so Ul � l � " � ln (kl ) < U l0 � l0� " � ln (kl0 � m) for any m 2 f 1; 2; : : :g, kl0 � m � 0. Thus

l could never be a maximizer in (20) with (kl � 1) units of l once it has been a minimizer in

(21). Since l and kl were arbitrary, this proves that any marginal unit lost is never gained

back.

Because an alternative that gains a unit can never lose that unit, and an alternative that

loses a unit can never gain back that unit, each unit in the initial feasible solution can be

moved at most once. This means the algorithm converges in at most n swaps.

THEOREM 3

Proof. We �rst create a �dummy alternative,� say UM +1 , which is much less attractive than

any alternative in the current list. For example, one could set UM +1 = � � , where � is

larger than any number in the base �eld. Now apply the algorithm of Theorem 2 with the

initial (dummy) solution ki = 0 for i = 1; 2; : : : ; M and kM +1 = n. (This starting solution is

analogous to that used by the �big M� method in LP's simplex algorithm.) Alternative M +1

will always be the minimum in (7), which means units will be removed from this alternative

one at a time until there are no units left. The �rst unit removed will alwaysgo to alternative

1 because it solves (6). Observe that this must be the optimal 1-pack; for if the dummy

alternative initially had n=1 units, the algorithm would terminate. The second unit removed

always goes to the alternative that solves (6) with the values k1 = 1;ki = 0 for i = 2; : : : ; M .

Observe that the alternative receiving the second unit is independent of n (n � 2) and

the resulting 2-pack must be the optimal 2-pack; for if the dummy alternative initially had

n=2 units, the algorithm would terminate. Proceeding in this fashion, at iteration n + 1 ,

we compute the optimal (n + 1) -pack by adding a unit to the alternative that maximizes
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Ui � ln(k�
i + 1) , where the values k�

i are the quantities already determined for the optimal

(n)-pack at the previous iteration. Observe that n only determines how many swaps are

made, and the sequence of swaps is otherwise independent of n.

THEOREM 4.

Proof. To prove (i), assume the optimal solution satis�es ki = 0 and kj > 0 with Ui > U j .

Then swapping the two values increases the linear utility term in (1) without a�ecting the

choice premium. This violates the optimality of the assumed solution and means the optimal

solution must be a contiguous set of the consumer's favorite alternatives.

To prove (ii), assume for some optimal n-pack (k�
1; k�

2; : : : ; k�
M ) that k�

i < k �
j for some Ui >

Uj : Then one could swap the quantities as in (i) to increase the value function (4). (Observe

the linear utility term would increase while the choice premium remained unchanged.) this

violates the optimality assumption.

To prove (iii), consider the optimality conditions in (9). For any two alternatives i and

j we therefore have Ui � ln (k�
i + 1) � Uj � ln

�
k�

j

�
, which can be rearranged to yield the

result.

THEOREM 5.

Proof. For t = 1 , the index set I 1(1; k1; k2; : : : ; kM ) reduces to a set of m + 1 vectors, each

having dimension (M + 1) . One vector is (1; 0; 0; : : :), which captures the selection of the

outside option; the remaining m vectors have a �1� in the position of the alternative included

in the n-pack and 0 elsewhere. The value formula for t = 1 reduces to the well-known ex-

pected value formula for the alternative having maximum utility, which is (see , for instance,

Ghulam Ali, 2008)

V



have (using (27) with Uj replaced by Uj + Vt (k1; k2; kj � 1; : : : ; kM ) and U0 replaced by

U0 + Vt (k1; k2; : : : ; kM )):

Vt+1 (k1; k2; : : : ; kM ) = ln

2

4

0

@
X

f j : k j > 0g

eUj + Vt (k1 ; k2 ; k j � 1;:::; k M )

1

A + eU0+ Vt (k1 ; k2 ;:::; k M )

3

5 + ; (28)



and x0 from the analysis. The index set reduces to

I t (k1; k2; : : : ; kM ) =

(

(x1; x2; ; ; ; ; xM ) :
MX

i =1

x i = t; 0 � x i � ki ; x i 2 N0 i = 1; 2; ::::; M

)

for t � n and the outside option terms in equations 28 and 29 disappear. The index

set for the value function in period n is I n (k1; k2; : : : ; kM ), which contains a single vector,

(k1; k2; : : : ; kM ). The optimal value function reduces to Vn (k1; k2; : : : ; kM ) = ln
�

n!
k1 !k2 !��� kM !e

P M
i =1 k i Ui

�
+

n , which is the formula stated in Theorem 1. The optimal policy stated for the canonical

model follows from inserting this value function in the general form of the optimal pol-

icy: max
j : k j > 0

(Uj + � j + Vn� 1



levels x i = q�
i + 1 and x j = 0; 1; : : : ; q�

j � 1). Because q�
j > k �

j � k�
i > q �

i , we must have

q�
j � q�

i + 2 and so
�
q�

j

� Q
l6= j;i (q�

l + 1) >
Q

l6= j (q�
l + 1) .

We now consider the di�erence exp(Vt (q� )) � exp(Vt (q� � ej + ei )) , which eliminates

the common terms. The unique terms for exp(Vt (q� )) can subsequently be paired with a

proper subset of of those from exp(Vt (q� � ej + ei )) in such a way that the number of times



which implies
eUj

q�
j

�
eUi

q�
i + 1

;

and thus

eUj

q�
j � 1 � eUi

q�
i

eUj

q�
j � 2 � eUi

q�
i � 1

...

Multiplying the left hand sides of the �rst z+1 of these inequalities and then doing the same

for the right hand sides implies

e(z+1) Uj

q�
j !

(q�
j � z� 1)!

�
e(z+1) Ui

(q�
i +1)!

(q�
i � z)!

:

This implies the bracketed term in the di�erence equation (30) is always non positive.

Because exp(Vt (q� � ej + ei )) has additional positive terms, this implies exp(Vt (q� )) <

exp(Vt (q� � ej + ei )) , which proves the theorem.

The following lemma is used in the proof of Theorem 7.

Lemma 1. Let ai � 0, bi � 0 for i = 0; 1; : : : ; m. De�ne the index setsS+ = f i : ai > bi g

and S� = f i : ai � bi g. Then if
P

ai �
P

bi; we must have
P

� i ai
i 2 S+

+
P

i 2 S�

� i ai �
P

� i bi
i 2 S+

+
P

i 2 S�

� i bi for all 0 � � i � 1 , � i � 1.

Proof. By the conditions of the lemma, we must have
P

i 2 S+

(ai � bi ) �
P

i 2 S�

� (ai � bi ) � 0,

and so
P

i 2 S+

� i (ai � bi ) �
P

i 2 S�

� � i (ai � bi ), which is a re-arrangement of the stated result.

THEOREM 7

Proof. Without loss of generality we take U0 = 0 . This means the additive constant appear-

ing in Vt is changed from t to t ( + U0) (see equation (14)). We set � =  + U0 to simplify

notation. Moreover, we choose to work with exp[V(K )] and prove exp[Vt+1 (K ) + Vt � 1(K )] �

exp[Vt (K ) + Vt (K )]. The proof is by induction on the size of the n-pack.
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For n = 1 , assume product j is the selected product. Then

exp(� 2t� ) exp[Vt+1 (K ) + Vt � 1(K )] =
�
1 + ( t + 1) eUj

� �
1 + ( t � 1)eUj

�

= 1 + 2 teUj + ( t2 � 1)e2Uj

� 1 + 2teUj + ( t2)e2Uj

= exp(� 2t� ) exp[Vt (K ) + Vt (K )]

Assume it is true for all packs K of size n � 1 or less. Observe that this means for any

integers t; j with t � 1 and 0 � j � t � 1

exp[Vt (K )]
exp[Vt � 1(K )]

�
exp[Vt � j (K )]

exp[Vt � j � 1(K )]
:

Thus for t > t 0 and any integer k such that t � k � t0+ k, we must also have

exp(Vt � k(K ) + Vt0+ k(K )) � exp(Vt � k+1 (K ) + Vt0+ k� 1(K ))

� exp(Vt � k+2 (K ) + Vt0+ k� 2(K )) (31)
...

� exp(Vt (K ) + Vt0(K ))

For any n-pack K = ( k1; k2; : : : ; kM ), consider any product having a positive quantity.

Suppose j is one such product. De�ne bK j = ( k1; : : : ; kj � 1; 0; kj +1 ; : : : ; kM ). Observe that

cK j must have n � 1 items or less. Because U0 = 0 , we may write the value function (see

(14)) as

exp[Vt (K )] = exp(t� )
X

x i � k i ; i � 1

t!

(t �
P M

i =1 x i )!

exp
� P M

i =1 x i Ui

�

Q M
i =1 x i !

= exp(t� )
k jX

z=0

X

x i � k i ; i � 1; i 6= j

t!

(t � z �
P M

i =1 ; i 6= j x i )!

exp(zUj ) exp
� P M

i =1 ; i 6= j x i Ui

�

z!
Q M

i =1 ; i 6= j x i !

= exp(t� )
k jX

z=0

t!exp(zUj )
z!(t � z)!

X

x i � k i ; i � 1; i 6= j

(t � z)!

(t � z �
P M

i =1 ; i 6= j x i )!

exp
� P M

i =1 ; i 6= j x i Ui

�

Q M
i =1 ; i 6= j x i !

39



= exp(t� )
k jX

z=0

t!exp(zUj )
z!(t � z)!

exp
�

Vt � z( bK j )
�

exp((z � t)� )

=
k jX

z=0

0

B
@

t

z

1

C
A exp(z (Uj + � )) exp

�
Vt � z( bK j )

�
:

It follows that

exp[Vt+1 (K ) + Vt � 1(K )] =

k jX

z=0

k jX

w=0

0

B
@

t + 1

z

1

C
A

0

B
@

t � 1

w

1

C
A exp((w + z) (Uj + � )) exp

h
Vt+1 � z( bK j ) + Vt � 1� w( bK j )

i
(32)

and

exp[Vt (K ) + Vt (K )] =
k jX

z=0

k jX

w=0

0

B
@

t

z

1

C
A

0

B
@

t

w

1

C
A exp((w + z) (Uj + � )) exp

h
Vt � z( bK j ) + Vt � w( bK j )

i
:

(33)

Consider the sets DL = f (z; w) : z + w = Lg, where L is an integer, 0 � L � 2kj . If one

thinks of the (kj + 1) � (kj + 1) terms in the summations of (32) and (33) as elements of

a (kj + 1) � (kj + 1) matrix with rows z = 0; 1; 2; : : : ; kj and columns w = 0; 1; 2; : : : ; kj ,

then the set DL corresponds to those elements running diagonally from the lower left to the

upper right. It is enough to show that for each of these (2kj + 1) sets the terms in equation

(33) exceed those in equation (32). After dividing out the term exp(L (Uj + � )) in both (32)

and (33), we must show

LX

l=0

0

B
@

t

L � l

1

C
A

0

B
@

t

l

1

C
A exp

�
Vt � L + l ( bK j )

�
exp

�
Vt � l ( bK j )

�

�
LX

l=0

 
t + 1

L � l

!  
t � 1

l

!

exp
�

Vt+1 � L + l ( bK j )
�

exp
�

Vt � 1� l ( bK j )
�expexpexpexpexpexpexpexpjj j + 1)



term by its upper bound exp
�

Vt ( bK j )
�

exp
�

Vt � L ( bK j )
�
(by the induction hypothesis (31))

and prove the resulting (stronger) inequality still holds. With this replacement in mind, we

combine the coe�cients corresponding to identical exponential terms on each side of (34).

We will use a's to represent the combined coe�cients for the left hand side of (34), and we

will use b's to represent coe�cients for the right hand side.

For L even, set m = L
2 and de�ne the coe�cients

ai =

8
>>>>>>>>><

>>>>>>>>>:

2

0

@
t

L � i

1

A

0

@
t

i

1

A i = 0; 1; : : : ; m � 1

0

@
t

m

1

A

0

@
t

m

1

A i = m

bi =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

0

@
t + 1

1

1

A

0

@
t � 1

L � 1

1

A +

0

@
t � 1

L

1

A i = 0

0

@
t + 1

L + 1 � i

1

A

0

@
t � 1

i � 1

1

A +

0

@
t + 1

i + 1

1

A

0

@
t � 1

L � 1 � i

1

A i = 1; : : : ; m � 1

0

@
t + 1

m + 1

1

A

0

@
t � 1

m � 1

1

A i = m

For L odd, set m = bL
2 cwhere bxc is the largest integer less than x. De�ne the coe�cients

ai = 2

 
t

L � i

!  
t

i

!

= i = 0; 1; : : : ; m
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bi =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0

B
B
@

t + 1

1

1

C
C
A

0

B
B
@

t � 1

L � 1

1

C
C
A +

0

B
B
@

t � 1

L

1

C
C
A i = 0

0

B
B
@

t + 1

L + 1 � i

1

C
C
A

0

B
B
@

t � 1

i � 1

1

C
C
A +

0

B
B
@

t + 1

i + 1

1

C
C
A

0

B
B
@

t � 1

L � 1 � i

1

C
C
A i = 1; : : : ; m

For both L even and L odd, the coe�cients ai and bi , in their respective (left hand side

and right hand side) summations, are the (combined) coe�cients of the exponential term

exp
�

Vt � i ( bK j )
�

exp
�

Vt � L + i ( bK j )
�
for i = 0; 1; 2; : : : ; m. Recall that the value exp

�
Vt+1 ( bK j )

�
exp

�
Vt � L � 1( bK j )

�

in the right hand sum of (34) has been replaced with the (larger) term exp
�

Vt ( bK j )
�

exp
�

Vt � L ( bK j )
�

for the calculation of b0: This means

mX

i =0

ai exp
�

Vt � i ( bK j )
�

exp
�

Vt � L + i ( bK j )
�

=

LX

l=0

0

B
@

t

L � l

1

C
A

0

B
@

t

l

1

C
A exp

�
Vt � L + l ( bK j )

�
exp

�
Vt � l ( bK j )

�
(35)

but
mX

i =0

bi exp
�

Vt � i ( bK j )
�

exp
�

Vt � L + i ( bK j )
�

�

LX

l=0

 
t + 1

L � l

!  
t � 1

l

!

exp
�

Vt+1 � L + l ( bK j )
�

exp
�

Vt � 1� l ( bK j )
�

(36)

We now show

mX

i =0

ai exp
�

Vt � i ( bK j )
�

exp
�

Vt � L + i ( bK j )
�

�
mX

i =0

bi exp
�

Vt � i ( bK j )
�

exp
�

Vt � L + i ( bK j )
�
(37)

It is straightforward to show that a0 � b0. It is also straightforward to show am > bm : For
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i = 1; : : : ; m � 1, we have

ai � bi =

 
t

L � i

!  
t

i

! �
2 �

t + 1
t

�
i

L + 1 � i
+

L � i
i + 1

��
: (38)

The function g(x) = x
L +1 � x + L � x

x+1 appearing in the bracketed term of (38) is strictly decreasing

for 0 � x � m � 1. For any given t, the function 2 � t+1
t g(x) is therefore strictly increasing

in x. Consequently, there is an index 0 < m � � m such that ai � bi > 0 for i � m� and

ai � bi � 0 for i < m � . De�ne

� i =
exp

�
Vt � i ( bK j )

�
exp

�
Vt � L + i ( bK j )

�

exp
�

Vt � m � ( bK j )
�

exp
�

Vt � L + m � ( bK j )
� i = 0; 1; : : : ; ; m� � 1

and

� i =
exp

�
Vt � i ( bK j )

�
exp

�
Vt � L + i ( bK j )

�

exp
�

Vt � m � ( bK j )
�

exp
�

Vt � L + m � ( bK j )
� i = m�



P m
i = m � � i bi . Multiplying both sides of this inequality by the term exp

�
Vt � m � ( bK j )

�
exp

�
Vt � L + m � ( bK j )

�

yields the inequality (37) and the theorem is proved.

Appendix B (Numerical Experiments)

We assume there are n alternatives to choose from, thus permitting maximum variety (i.e.,

a pack with one unit of each alternative). Without loss of generality, alternative 1 is the

consumer's favorite (in expectation), alternative 2 is their second favorite and so on, which

means U1 � U2 � � � � � Un . The indices for the consumer (k) and the consumption time (t )

are suppressed. The cdf for alternative i 's error � i is Fi and its density is f i .

The probability that the consumer chooses item i is

P(i ) = P robf Ui + � i � Uj + " j 8j; j 6= ig ;

which implies the marginal choice probability

P(i ) =

1�

�1

Y

j 6= i

Fj (Ui � Uj + � ) f i (� )d�: (40)

We will have frequent occasion to calculate the expected value of the maximum of random

variables having the general form X i = ci + � i for i 2 A � f 1; 2; 3: : : ; ng. The cdf GA (t) for

max)i i U: : : ; n



packs from the values for smaller packs, e.g., to calculate the value for (2,1,0) we must �rst

know the values for (2,0,0) and (1,1,0). This is accomplished using n nested loops organized

in a particular fashion. The outermost loop corresponds to the most attractive alternative

(alternative 1), the second outermost loop to the second favorite (alternative 2), and so on.

Letting ki represent the index for each alternative, the outermost loop uses k1 = 0; 1; 2: : : ; n;

the next loop uses k2 = 0; 1; 2: : : n � k1; the third loop uses k3 = 0; 1; 2: : : n � k1 � k2 and

so on. The innermost loop uses kn = 0; 1; 2: : : n � k1 � k2 � � � � � kn� 1. Calculating the

value function for each j -pack (j � n) using this nested structure ensures the values for the



Table 1: Computed Utility Parameters for 3-Packs using Uniform (U) and Normal (N)
Scenario U1(U) U2(U) U3(U) U1(N) U2(N) U3(N)

A (50%, 30%, 20%) 1.4125 1.2857 1.1964 .5202 .1013 -.1982
B (40%, 40%, 20%) 1.0933 1.0933 .9368 .2516 .2516 -.2768
C (50%, 25%, 25%) 1.1457 .9775 .9775 .3835 -.1730 -.1730
D (60%, 30%, 10%) 1.2310 1.0500 .8197 .4900 -.0957 -.8602
E (40%, 30%, 30%) 1.1803 1.1136 1.1136 -.0257 -.2545 -.2545
F (60%, 20%, 20%) .27345 0.0000 0.0000 .88518 0.0000 0.0000

pothetical case (33.33%, 33.33%, 33.33%) used in x3:4.) For each of these six scenarios,

we calculated parameters U1; U2; U3 that produced the scenario's choice probabilities. For

Gumbel distributed errors, this could be done by simply setting Ui = ln(! i ) where ! i is the

scenario's choice frequency for alternative i . For the uniform and normal distribution, we

calculated U1; U2; U3 using equation (40) and a simple weighted least squares optimization

model where the ! i served as targets. All values are unique up to an additive shift. The

results are given in Table 1.

There are ten possible 3-packs, and optimal values were computed for each of these

ten 3-packs using the three error distributions and the six scenarios. Each combination

of a distribution and a scenario is summarized by a a vector having ten values, one for

each possible 3-pack. While the scales and spacings were di�erent for each vector, there

was extraordinary agreement in how the three vectors valued these 3-packs. Indeed, the

correlation coe�cient between the Gumbel vector and the normal and uniform vectors was

over .9985 in all six scenarios, averaging .9995. There were some minor di�erences. In

scenarios B, C and D and F, the Gumbel included several ties that were not obtained using

the normal and uniform distribution. In scenario B, the Gumbel produced a three-way tie

between (2,1,0), (1,2,0) and (1,1,1) for the highest value, whereas the normal and uniform

produced a two-way tie between (2,1,0) and (1,2,0) and assigned (1,1,1) to the third highest

value. Similarly, in scenario C, the Gumbel produced a three-way tie between (2,1,0), (2,0,1)

and (1,1,1) for the highest value, whereas the uniform and normal produced a two-way tie

between (2,1,0) and (2,0,1) for the highest value and assigned (1,1,1) to the third spot.

In scenario D, the Gumbel produced a tie between (2,0,1) and (1,1,1) for the 4th spot,

whereas the uniform and normal split these into (2,0,1) (4th spot) and (1,1,1) (5th spot).

In scenario F, both the Gumbel and normal produced a two-way tie between (2,0,1), (2,1,0)

for the top spot and assigned (3,0,0) to the third spot, whereas the uniform choose (3,0,0)

for the top spot with (2,1,0) and (2,0,1) tied for the second spot. All of the aforementioned

discrepancies involved minute di�erences in the value functions (approximately 1.2% of the

range in values), but it was more than could be attributed to numerical error. Overall, values
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obtained using the Gumbel distribution were highly representative of what we would expect

to obtain for the uniform and normal error distributions.

6-packs
We repeated the foregoing experiment on 6-packs. Since we did not have experimental data

(choice frequencies) from students in this case, we simulated six choice frequencies using

six random draws X i from a uniform distribution on [0,1]. The choice frequencies f (i )

were then calculated using f (i ) =
Q i

l =1 X lP 6
l =1

Q i
l =1 X l

, which ensured f (1) � f (2) � � � � � f (6)

and
P 6

i =1 f (i ) = 1 . One hundred scenarios were simulated, and these ran the gamut from

broadly distributed (24%, 18.3%, 17.2%, 16.8%, 14.4%, 8.9%) all the way to highly skewed

(98% for choice 1, 1.9% for choice 2). In contrast to the previous experiment, many of these

scenarios had a high number of low frequency alternatives (63 scenarios had at least one

choice frequency below 1%).

As before, the f (i ) for each scenario became targets in an optimization framework to

calibrate utility parameters (for the uniform and normal) so that each distribution's choice

probabilities matched the f (i ) to within 5 digits. These utility parameters were then used

to calculate the values for all 462 possible 6-packs under each error distribution, resulting

in a 462 dimensional vector of values for each scenario and each distribution. The average

correlation between the Gumbel valuation vector and the uniform valuation vector slipped

to .971, whereas the correlation between the Gumbel and normal valuation vectors remained

nearly the same at .992. Upon examining the results, it became apparent that the results

were impacted by the large number of scenarios having one or more low frequency alterna-

tives. These scenarios produced notably lower correlations, the lowest of which, scenario 94,

produced a .851 correlation between the Gumbel and uniform valuations (but .943 between

the Gumbel and normal). In scenario 94, the three lowest choice frequencies were .0003,



packs including one or more of the three lowest choice frequencies, the correlation between

the remaining Gumbel and uniform valuations jumps to .995. In sum, we �nd that valu-

ations for packs that are likely to be selected (i.e., attractive to a consumer) remain very

highly correlated in all three models. Distortions between the Gumbel and uniform (and

between the normal and uniform) occur in packs including one or more very low probability

alternatives. Since optimization of n-packs implicitly ignores such packs, we would expect

these distortions, when they occur, to have no meaningful impact on our results.
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